Abstract

Interfacial thermal resistance (ITR) between molybdenum disulfide (MoS2) and crystalline or amorphous silica as a substrate was studied using molecular dynamics (MD) simulation. To do so, pump–probe method, which is a MD technique inspired by an experimental method, was employed. The effects of substrate type, temperature, number of layers of MoS2 and van der Waals (vdW) coupling strength on ITR between MoS2 and its silica substrates were explored. It was observed that, obtained ITR values for crystalline or amorphous silica substrate were close to one another. Our findings showed that, by increasing the temperature from 200 K to 400 K, ITR between a single-layer MoS2 and its crystalline or amorphous silica substrate decreases by about 20%, which might be due to better phonons couplings at the interface in higher temperatures. We also showed that, ITR between multilayer MoS2 and crystalline or amorphous silica substrate does not differ by increasing the number of layers of MoS2. It has been found that, by increasing Lennard-Jones coupling strength from 0.5 to 2, ITR between a single-layer MoS2 and crystalline/amorphous silica substrate decreases by around 80%, showing better phonons couplings at the interface between the two structures.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.