Abstract

A rational design of sulfur host is the key to conquering the"polysulfide shuttle effects" by accelerating the polysulfide conversion. Since the process involves solid-liquid-solid multistep phase transitions, purposely-engineered heterostructure catalysts with various active regions for catalyzing conversion steps correspondingly are beneficial to promote the overall conversion process. However, the functionalities of the materials surface and interface in heterostructure catalysts remain unclear. In this work, an Mo2C/MoC catalyst with abundant Mo2C surface-interface-MoC surface tri-active-region is developed by in situ converting the MoZn-metal organic framework. The experimental and simulation studies demonstrate the interface can catch long-chain polysulfides and promote their conversion. Instead, the Mo2C and MoC tend to accommodate the short-chain polysulfide and accelerate their conversion and the Li2S dissociation. Benefitting from the high catalytic ability, the Li-S battery assembled with the Mo2C/MoC-S cathode shows more discrete redox reactions and delivers a high initial capacity of 1603.6 mAh g-1 at 1 C charging-discharging rate, which is over twofolds of the one assembled using individual hosts, and 80.4% capacity can be maintained after 1000 cycles at 3 C rate. This work has demonstrated a novel synergy between the interface and material surface, which will help the future design of high-performance Li-S batteries.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call