Abstract

The so-called peel test, in which a thin plate bonded to a substrate is subjected to an inclined pulling force, has been widely used to characterise the bond behaviour of adhesives. This paper presents an analytical solution for the interfacial normal and shear stresses in such a peel test to provide an improved understanding of its underlying mechanism. An approximate closed-form solution is also presented. The effect of the peel angle (i.e. the angle between the applied force and the substrate) on the interfacial stresses is discussed. Apart from being a widely used test for quantifying adhesive characteristics, the process of debonding in a peel test resembles that of intermediate flexural-shear or shear crack induced debonding in flexurally strengthened RC members, where a relative vertical displacement exists between the two sides of the crack, leading to an angle between the external plate and the concrete substrate. Therefore, the results of this study also offer some insight into the latter failure mode which is very important in the flexural strengthening design of RC members.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.