Abstract

Surface-enhanced Raman scattering (SERS) is a highly sensitive tool in the field of environmental testing. However, the detection and accurate quantification of weakly adsorbed molecules (such as heavy metal ions) remain a challenge. Herein, we combine clean SERS substrates capable of capturing heavy metal ions with convolutional neural network (CNN) algorithm models for quantitative detection of heavy metal ions in solution. The SERS substrate consists of surfactant-free Au nanoparticles (NPs) and l-cysteine molecules. As plasmonic nanobuilt blocks, surfactant-free Au NPs without physical or chemical barriers are more accessible to target molecules. The amino and carboxyl groups in the l-cysteine molecule can chelate As5+ ions. The CNN algorithm model is applied to quantify and predict the concentration of As5+ ions in samples. The results demonstrated that this strategy allows for fast and accurate prediction of As5+ ion concentrations, and the determination coefficient between the predicted and actual values is as high as 0.991.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call