Abstract
The interfacial reactions of Pd/Si0.76Ge0.24 were studied by pulsed KrF laser annealing as a function of energy density and pulse number. At an energy density of 0.1–0.4 J/cm2, a continuous germanosilicide layer composed of a low-temperature phase, Pd2(Si1−xGex), and a high-temperature phase, Pd(Si1−xGex), was formed. In contrast to vacuum annealing, Ge segregation out of the germanosilicide layer and the strain relaxation of the residual Si0.76Ge0.24 film could be effectively suppressed by pulsed KrF laser annealing at 0.1 J/cm2. Multiple pulse annealing at 0.1 J/cm2 could further homogenize the Pd concentration of the germanosilicide layer and promote the growth of Pd(Si1−xGex). Concurrently, the smoothness of the germanosilicide layer was substantially improved in comparison with those grown by vacuum annealing at temperatures above 200 °C. The studies also revealed that for multiple pulse annealing at 0.1 J/cm2 with a low repetition rate, 1 Hz, the evolution of phase formation and Pd diffusion could be proceeded by each individual laser pulse.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have