Abstract
The change induced in the physicochemical properties of polymer while hosting ions provides a platform for studying its potential applications in electrochemical devices, water treatment plants, and materials engineering science. The ability to host ions is limited in very few polymers, which lack a detailed molecular-level understanding for showcasing the polymer-ion linkage behavior at the interfacial region. In the present manuscript, we have employed sum frequency generation (SFG) vibrational spectroscopy to investigate the interfacial structure of a new class phosphazene-based methoxyethoxyethoxyphosphazene (MEEP) polymer in the presence of lithium chloride salt at the air-aqueous interface. The interfacial aspects of the molecular system collected through SFG spectral signatures reveal enhanced water ordering and relative hydrogen bonding strength at the air-aqueous interface. The careful observation of the study finds a synchronous contribution of van der Waals and electrostatic forces in facilitating changes in the interfacial water structure that are susceptible to MEEP concentration in the presence of ions. The observation indicates that dilute MEEP concentrations support the role of electrostatic interaction, leading to an ordered water structure in proximity to diffused ions at the interfacial region. Conversely, higher MEEP concentrations promote the dominance of van der Waals interactions at the air-aqueous interface. Our study highlights the establishment of polymer electrolyte (PE) characteristics mediated by intermolecular interactions, as observed through the spectral signatures witnessed at the air-aqueous interface. The investigation illustrates the polymer-ion linkage adsorption effects at the interfacial region, which explains the macroscopic changes observed from the cyclic voltammetry studies. The fundamental findings from our studies can be helpful in the design and fine-tuning of better PE systems that can offer improved hydrophobic membranes and interface stability for use in electrochemical-based power sources.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have