Abstract

Metal sulfides exhibit obvious volume expansion due to the inherent poor conductivity and large temperature fluctuations, leading to reduced storage capacity. Herein, an electrostatic self-assembly strategy was proposed to fabricate a three-dimensional (3D) polyaniline (PANI) encapsulated hollow ZnS-SnS2 (H-ZSS) heterojunction confined on Ti3C2Tx MXene nanosheets (H-ZnS-SnS2@MXene@PANI, denoted as H-ZSSMP), which exhibits remarkable reversible capacity and cyclic stability (520.3 mAh/g at 2 A/g after 1000 cycles) at room temperature. Additionally, specific capacity can stabilized at 362.5 mAh/g for 250 cycles at −20 °C. A full cell with the configuration of H-ZSSMP//lithium iron phosphate (LiFePO4) can retain a satisfactory reversible capacity of 424.7 mAh/g after 100 cycles at 0.1 C. Theory calculations confirm heterogeneous interface can accelerate the transfer of ions through the interfacial regulation effect of MXene on H-ZSS. Our work provides a simple strategy to improve the capacity and stability of lithium-ion batteries (LIBs), as well as the new applications of MXene and bimetallic sulfides as anode materials, which will facilitate the development of MXene based composites for energy storage.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.