Abstract

The interfacial microstructure and thermal stability of Zr55Cu30Ni5Al10 metallic glass joints formed by ultrasonic bonding were investigated. The analysis of interfacial microstructure by scanning electron microscopy and transmission electron microscopy has proven the successful formation of a considerably broad adhered area free of devitrification by ultrasonic bonding without external heating. The thermal analysis of the as-prepared Zr55Cu30Ni5Al10 metallic glass by differential scanning calorimetry has revealed the change in the devitrification temperature of Zr55Cu30Ni5Al10 metallic glass depending on the heating rate. The direct measurement of the temperature at the interface during ultrasonic bonding has clarified the thermal history at the interface. The temperature exceeds barely the glass-transition temperature (Tg) and the total time exceeding Tg is very short. It is also suggested that the temperature starts to decrease while the ultrasonic vibration is being applied due to the suppression of frictional sliding by adhesion. As a result, the thermal stability of the metallic glass is not deteriorated by ultrasonic bonding. [doi:10.2320/matertrans.ME200825]

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call