Abstract

A simple and cost-effective manufacturing process was employed to prepare composite honeycomb sandwich panels for aerospace applications. Carbon fiber–epoxy matrix composite facesheets were first prepared by vacuum-assisted resin transfer molding, and later these facesheets were bonded with the Nomex\(^{\textregistered }\) honeycomb core by compression technique wherein the whole sandwich assembly containing facesheets, epoxy- based adhesive film and honeycomb core was clamped between two parallel metallic plates followed by curing in oven. Different curing temperatures, i.e., 100, 110, 120 and 130\({^{\circ }}\)C, and curing times, i.e., 2 and 3 h, were employed to optimize the curing parameters of the adhesive film to join CF–epoxy facesheets with the honeycomb core. The optimization of the curing parameters was related to the maximum load-bearing capability of composite honeycomb sandwich panels under three-point bend test and associated mechanical properties. It was shown that the composite honeycomb sandwich panels cured at 130\({^{\circ }}\)C for 3 h demonstrated maximum mechanical performance.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call