Abstract

Composite honeycomb sandwich panels (CHSPs) have been widely used in the aerospace industry owing to their lightweight and superior mechanical properties. However, these CHSPs are susceptible to impact damage, leading to a significant reduction in compressive strength and potentially jeopardize aircraft safety. It is crucial to investigate repair methods for CHSPs with impact damage. This paper aims to evaluate the repair performance of CHSPs with impact damage through an analysis of their compressive failure behaviors. To accomplish this, both experimental tests and advanced numerical models are employed. The numerical models for the intact, damaged and stepped-scarf repaired CHSPs are established using the progressive failure analysis model, cohesive zone model and sandwich plate theory. A good agreement is observed between the experimental results and numerical predictions of compressive failure behaviors. Moreover, the validated numerical models are successfully utilized for determining optimum repair parameters by parametric analysis of the repaired CHSPs. The establishment of these numerical models offers an accurate and cost-effective evaluation of repair performance for CHSPs with impact damage, highlighting the novelty and main contribution of this paper.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call