Abstract

ABSTRACTThe electrical conduction mechanism contributing to the leakage current at different field regions has been studied in this work. The current-voltage (I-V) measurement of TiN/HfO2/SiO2/P-Si nMOS capacitor has been taken for two different interfacial layer (SiO2) growth conditions such as in situ steam grown (ISSG) and chemical processes. It is observed that Poole-Frenkel mechanism is the dominant conduction mechanism in high field region whereas Ohmic conduction is dominant in the low field region. Also it is seen that the gate leakage current is reduced for the devices having chemically grown interfacial layer compared to that of ISSG devices. Both trap energy level (ϕt) and activation energy (Ea) increase in the chemically grown interfacial layer devices for the Poole-Frenkel and Ohmic conduction mechanisms respectively in comparison to ISSG devices. Trap energy level (ϕt) of ~ 0.2 eV, obtained from Poole-Frenkel mechanism indicates that the doubly ionized oxygen vacancies (V2-) are the active defects and are contributing to the leakage current in these devices.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call