Abstract
The interfacial interaction within the amyloid protein corona based on MoS2 nanomaterial is crucial, both for understanding the biological effects of MoS2 nanomaterial and the evolution of amyloid diseases. The specific nano-bio interface phenomenon of human islet amyloid peptide (hIAPP) and MoS2 nanosheet was investigated by using theoretical and experimental methods. The MoS2 nanosheet enables the attraction of hIAPP monomer, dimer, and oligomer on its surface through van der Waals forces. Especially, the means of interaction between two hIAPP peptides might be changed by MoS2 nanosheet. In addition, it is interesting to find that the hIAPP oligomer can stably interact with the MoS2 nanosheet in one unique "standing" binding mode with an entire exposed β-sheet surface. All the interaction modes on the surface of MoS2 nanosheet can be the essence of amyloid protein corona that may provide the venue to facilitate the fibrillation of hIAPP proteins. Further, it was verified experimentally that MoS2 nanosheets could accelerate the fibrillation of hIAPP at a certain concentration mainly based on the newly formed nano-bio interface. In general, our results provide insight into the molecular interaction mechanism of the nano-bio interface within the amyloid protein corona, and shed light on the pathway of amyloid protein aggregation that is related to the evolution of amyloid diseases.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Chembiochem : a European journal of chemical biology
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.