Abstract

Lung surfactant (LS) plays a crucial role in regulating surface tension during normal respiration cycles by decreasing the work associated with lung expansion and therefore decreases the metabolic energy consumed. Monolayer surfactant films composed of a mixture of phospholipids and spreading additives are of optional utility for applications in lung surfactant‐based therapies. A simple, minimal model of such a lung surfactant system, composed of 1,2‐dipalmitoyl‐sn‐glycero‐3‐[phosphor‐rac‐(1‐gylcerol)] (DPPG) and hexadecanol (HD), was prepared, and the surface pressure‐area (π‐A) isotherms and nanostructure characteristics of the binary mixture were investigated at the air/water interface using a combination of Langmuir‐Blodgett (LB) and atomic force microscopy (AFM) techniques. Based on the regular solution theory, the miscibility and stability of the two components in the monolayer were analyzed in terms of compression modulus () , excess Gibbs free energy () , activity coefficients (γ), and interaction parameter (ξ). The results of this paper provide valuable insight into basic thermodynamics and nanostructure of mixed DPPG/HD monolayers; it is helpful to understand the thermodynamic behavior of HD as spreading additive in LS monolayer with a view toward characterizing potential improvements to LS performance brought about by addition of HD to lung phospholipids.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.