Abstract
The charge carrier mobility of organic field-effect transistors (OFETs) has been remarkably improved through several engineering approaches and techniques by targeting pivotal parts. Herein, an ultrathin perovskite channel layer that boosts the field-effect mobility of conjugated polymer OFETs by forming perovskite-conjugated polymer hybrid semiconducting channel is introduced. The optimized lead-iodide-based perovskite-conjugated polymer hybrid channel transistors show enhanced hole mobility of over 4cm2 V-1 s-1 (average=2.10cm2 V-1 s-1 ) with high reproducibility using a benchmark poly(3-hexylthiophene) (P3HT) polymer and employing high-k fluorinated polymer dielectrics. A significant hole carrier mobility enhancement of ≈200-400% in benzo[1,2-b:4,5:b']dithiophene (BDT)-based conjugated polymers is also demonstrated by exploring certain interactive groups with perovskite. This significant enhancement in the transistor performance is attributed to the increased charge carrier density in the hybrid semiconducting channel and the perovskite-polymer interactions. The findings of this paper demonstrate an exceptional engineering approach for carrier mobility enhancement in hybrid perovskite-conjugated-polymer-based electronic devices.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.