Abstract

We study the relation of crystal-liquid interfacial free energy and medium range order in the quasicrystal-forming $\mathrm{T}{\mathrm{i}}_{37}\mathrm{Z}{\mathrm{r}}_{42}\mathrm{N}{\mathrm{i}}_{21}$ liquid from undercooling experiment and ab initio molecular dynamics (MD) simulation. Adding a small amount of Ag to the liquid significantly reduces the degree of undercooling, which is suggestive of small interfacial free energy, and thus very similar atomic configuration between the liquid and the icosahedral quasicrystal phases. Using ab initio MD study, we find that Ag atoms predominantly form a bond with Zr atoms in the short range and, further, Ag-Zr pairs are extended in the liquid, as a medium range order which is identical to the global structural feature reported recently [Liu et al., Phys. Rev. Lett. 105, 155501 (2010)]. This result may expect extremely small undercooling if the icosahedral medium range order exists in a liquid forming an icosahedral quasicrystal, which implies the ambiguity of clear distinction of heterogeneous and homogeneous nucleation.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.