Abstract

Using ab initio molecular dynamics simulation, glass-forming abilities of Al90Fe10 and Al90Fe5Ce5 alloys have been investigated successfully correlated with the atomic structure and composition. The origin of enhanced glass-forming ability for Al90Fe5Ce5 alloy is interpreted by taking advantage of the calculated information. It is found that the enhanced glass-forming ability with the addition of Ce into Al90Fe10 alloy, in contrast to the transitional metallic glass, has nothing to do with the kinetic factor and stability of local atomic packing, but the atomic environment and medium-range order in the supercooled liquid state. A comparison of structure and composition between the supercooled liquid and potential crystalline phases demonstrates that the precipitation of the solid solution and compounds from the amorphous matrix for Al90Fe10 alloy becomes much more difficult with the addition of Ce. After glass transition, the resultant glassy state for Al90Fe5Ce5 alloy is further stabilized by stable local atomic packings.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.