Abstract

This paper provides the solution to the problem of dissimilar, homogeneous semi-infinite strips bonded through a functionally graded interlayer and weakened by an embedded or edge interfacial crack. The bonded system is assumed to be under antiplane deformation, subjected to either traction-free or clamped boundary conditions along its bounding planes. Based on the Fourier integral transform, the problem is formulated in terms of a singular integral equation which has a simple Cauchy kernel for the embedded crack and a generalized Cauchy kernel for the edge crack. In the numerical results, the effects of geometric and material parameters of the bonded system on the crack-tip stress intensity factors are presented in order to quantify the interfacial fracture behavior in the presence of the graded interlayer.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call