Abstract
For Sn–58Bi low temperature solder alloy, local molten induced from electromigration Joule heating might change the atomic diffusion and interfacial behavior. In this paper, the diffusion behavior and interfacial evolution of Cu/Sn–58Bi/Cu joints were studied under liquid–solid (L–S) electromigration in molten solder and were compared with the interfacial behaviors in solid–solid (S–S) electromigration in solid solder. L–S or S–S electromigration was realized by applying a current density of 1.0 × 104 A/cm2 to molten solder at 150 °C or solid solder at 25 °C, respectively. During S–S electromigration, Bi atoms were driven towards anode side under electromigration induced flux and then accumulated to form Bi-rich layer near anode interface with current stressing time increasing. During L–S electromigration, Bi atoms were reversely migrated from anode to cathode to produce Bi segregation at cathode interface, while Cu atoms were rapidly dissolved into molten solder from cathode and migrated to form large amounts of Cu6Sn5 rod-like phases near anode interface. The reversal in the direction of Bi atoms may be attributed to the reversal in the direction of electromigration induced flux and correspondingly the change on effective charge number of Bi atoms from negative to positive.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have