Abstract

Interfacial evaluation and self-sensing of tensile loading/subsequent unloading and microfailure detection of the carbon fiber/epoxy-amine terminated (AT)-polyetherimide (PEI) composites were investigated using micromechanical test and electrical resistance measurement with an aid of acoustic emission (AE). As AT-PEI content increased, both fracture toughness of epoxy-AT-PEI matrix and interfacial shear strength (IFSS) increased due to the optimized matrix modulus for energy absorption. With increasing curing temperature and time, the IFSS increased and then decreased. During curing process, the change in electrical resistance, Δ R increased gradually with adding AT-PEI contents because of different thermal and curing shrinkage of epoxy matrices. Moisture adsorption under durability test could cause to the change in matrix modulus and thus resulted in the change in electrical resistivity correspondently. Under changeable cyclic loading/subsequent unloading, apparent modulus and electrical resistivity during curing process were consistent well with the fracture toughness of epoxy modified with AT-PEI. In compressive test, the electrical resistivity decreased gradually initially and then increased rapidly during subsequent progress of microfailure including fiber fracture showing the buckling pattern.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.