Abstract
Electrochemical CO2 reduction to value-added chemicals by renewable energy sources is a promising way to implement the artificial carbon cycle. During the reaction, especially at high current densities for practical applications, the complex interaction between the key intermediates and the active sites would affect the selectivity, while the reconfiguration of electrocatalysts could restrict the stability. This paper describes the fabrication of Ag/C catalysts with a well-engineered interfacial structure, in which Ag nanoparticles are partially encapsulated by C supports. The obtained electrocatalyst exhibits CO Faradaic efficiencies (FEs) of over 90% at current densities even as high as 1.1 A/cm2. The strong interfacial interaction between Ag and C leads to highly localized electron density that promotes the rate-determining electron transfer step by enhancing the adsorption and the stabilization of the key *COO‒ intermediate. In addition, the partially encapsulated structure prevents the reconfiguration of Ag during the reaction. Stable performance for over 600 h at 500 mA/cm2 is achieved with CO FE maintaining over 95%, which is among the best stability with such a high selectivity and current density. This work provides a novel catalyst design showing the potential for the practical application of electrochemical reduction of CO2.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.