Abstract

Transition metal-based oxyhydroxides (MOOH) have garnered significant attention as promising catalyst for the Oxygen Evolution Reaction (OER). However, the direct synthesis of MOOH poses challenges due to the instability of trivalent cobalt and nickel salts, attrivuted to their high oxidation states. In this study, theoretical computations predicted that Co(OH)2 nanosheets are exclusively formed on carbon structures, owing to the stronger binding energy between CoOOH and CC compared to Co(OH)2. Furthermore, the presence of FeOOH interface reduces the binding energy between CoOOH and carbon structure. Experiment evidence confirms that CoOOH can be directly synthesized through controlled epitaxial growth on an FeOOH interface using a hydrothermal method. Moreover, the in-situ doping of iron leads to the formation of high-quality Fe0.35Co0.65OOH with exceptional OER performance, displaying a low overpotential of 240 mV at 10 mA cm−2 and a small Tafel slope of 43 mV dec-1. Density functional theory (DFT) calculations uncover the substantial enhancement of oxygen-containing species adsorption abilities by Fe0.35Co0.65OOH, resulting in improved OER activity. This work presents a promising strategy for the efficient preparation of layered cobalt oxyhydroxides, enabling efficient energy conversion and storage.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.