Abstract
Photovoltaic technology with low weight, high specific power in cold environments, and compatibility with flexible fabrication is highly desired for near-space vehicles and polar region applications. Herein, we demonstrate efficient low-temperature flexible perovskite solar cells by improving the interfacial contact between electron-transport layer (ETL) and perovskite layer. We find that the adsorbed oxygen active sites and oxygen vacancies of flexible tin oxide (SnO2) ETL layer can be effectively decreased by incorporating a trace amount of titanium tetrachloride (TiCl4). The effective defects elimination at the interfacial increases the electron mobility of flexible SnO2 layer, regulates band alignment at the perovskite/SnO2 interface, induces larger perovskite crystal growth, and improves charge collection efficiency in a complete solar cell. Correspondingly, the improved interfacial contact transforms into high-performance solar cells under one-sun illumination (AM 1.5G) with efficiencies up to 23.7% at 218 K, which might open up a new era of application of this emerging flexible photovoltaic technology to low-temperature environments such as near-space and polar regions.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have