Abstract
Using time-domain density functional theory and nonadiabatic (NA) molecular dynamics, we demonstrate that interfacial interaction between WS2 and CsPbBr3 quantum dots (QDs) determines the band alignment, leading to a type-II and type-I heterojunction for the WS2 contacting with Cs/Br- and PbBr2-terminated facet QD, respectively. In the type-II heterojunction, electron transfer is faster than hole transfer arising due to the stronger NA coupling, higher density of electron acceptor states, and more and higher phonon modes involved. Both the electron and hole transfer times are subpicosecond, in agreement with experiments. The energy lost by the electron and hole is slower than charge transfer by several times, facilitating keeping charge carriers sufficiently "hot". Particularly, the electron-hole recombination occurs over 1 ns, favoring a long-lived charge-separated state. Detailed atomistic insights into the photoinduced charge and energy dynamics at the WS2/QD interface provide valuable guidelines for improving performance of perovskite/transition-metal dichalcogenide solar cells.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.