Abstract

The search for suitable mixtures as boiling fluids leads to the development of ternary liquid mixtures that could handle even higher heat fluxes than binary mixtures through the formation of stable bubble-micelles departing from the heater’s surface. The amount of experimental work for testing the combinations is reduced using the interfacial tension prediction capabilities of simulation software, although it is not possible to predict singularities in the interfacial tension behavior of the mixtures. The ethanol aqueous mixture shows a singularity in its interfacial tension value at 16% ethanol by weight. In this work was combined with glycols for enhancing boiling heat transfer by decreasing the mixture interfacial tension. Also, the effect of the surfactants Dodecyl Benzene Sodium Sulfonate (DBSS) and Sodium Lauryl Sulfonate (SLS) in the mixture interfacial tension was studied. The measurements of sessile drop contact angles of mixtures with added surfactant allowed finding the singularities in the surface tension values that are related to critical micelle concentrations and the increment in boiling heat transfer. The propilenglycol-ethanol-water mixture produced the lowest values of contact angles, while for the etilenglycol-ethanol-water mixtures no such reduction was obtained with the same amount of the glycol. The use of DBSS and SLS at their critical micelle concentration decreased further the interfacial tension of the propilenglycol ternary mixture to generate a mixture that could improve the convective heat transfer coefficient.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.