Abstract

Creating specific noble metal/metal-organic framework (MOF) heterojunction nanostructures represents an effective strategy to promote water electrolysis but remains rather challenging. Herein, a heterojunction electrocatalyst is developed by growing Ir nanoparticles on ultrathin NiFe-MOF nanosheets supported by nickel foam (NF) via a readily accessible solvothermal approach and subsequent redox strategy. Because of the electronic interactions between Ir nanoparticles and NiFe-MOF nanosheets, the optimized Ir@NiFe-MOF/NF catalyst exhibits exceptional bifunctional performance for the hydrogen evolution reaction (HER) (η10 = 15mV, η denotes the overpotential) and oxygen evolution reaction (OER) (η10 = 213mV) in 1.0m KOH solution, superior to commercial and recently reported electrocatalysts. Density functional theory calculations are used to further investigate the electronic interactions between Ir nanoparticles and NiFe-MOF nanosheets, shedding light on the mechanisms behind the enhanced HER and OER performance. This work details a promising approach for the design and development of efficient electrocatalysts for overall water splitting.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call