Abstract

An array of continuously-distributed screw dislocations piled up against a circular cylindrical rigid inclusion is analyzed by the complex-variable method. Both uniformly applied shearing load at infinity and internal friction stress opposing the movement of dislocations are taken into account. The pile-up tip is away from the matrix-inclusion interface, its distance from the interface being determined by the condition that the stresses should be finite everywhere in the solid. Stress distributions on the interface are determined, and de-bonding of the interface, namely the formation of initial voids or cracks, is discussed. Stress and displacement near the tip of these initial voids are then analyzed. This analysis is combined with the virtual work argument of A.A. Griffith (1920) to yield a criterion for the initial voids to grow along the interface. The critical void-growth load is expressed by the sum of two terms, one proportional to the friction stress and the other inversely proportional to the square-root of the inclusion radius.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.