Abstract
Strain gradient breaks inversion symmetry and induces flexoelectric polarization as well as electromechanical coupling in all material systems, though the effect is usually only significant at the nanoscale. Two-dimensional (2D) materials and thin membranes thus provide an ideal platform to explore flexoelectricity, which has been widely pursued, yet quantitative theoretical analysis is needed to guide the rapid experimental developments. In this work, we develop 2D flexoelectric model for suspended membrane based on von Kármán plate theory, and implement it into finite element computation using conforming BCIZ element. Numerical results and discussions on flexoelectric polarization in suspended membrane under uniform pressure or concentrated load are presented, which are validated by piezoresponse force microscopy (PFM) experiments under a range of membrane thicknesses and loading forces showing good agreement with computations. Since large strain gradient often exists in samples with small size in one or two dimensions, the method we develop provides a powerful tool to study a wide range of low-dimensional materials and structures with flexoelectric effect.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have