Abstract

Always, the interfacial thermal resistance and the phonons scattering greatly restrict the further improvement of boron nitride nanosheets (BNNS)/polymer composites. Herein, the interfacial crosslinking approach was innovatively used to enhance the in-plane thermal conductivity (TC) and mechanical properties of the BNNS/ANFs composites. In order to achieve the interfacial crosslinking, the BNNS was aminated via melting functionalization with urea and the ANFs were activated by hydrolysis with phosphoric acid (PA). The nacre-like cross-linked aminated BNNS/reactive ANFs (C-ABNNs/R-ANFs) composite film was fabricated by vacuum-assisted filtration followed with interfacial crosslinked by condensation reaction with glutaraldehyde (GA). The interfacial crosslinking effectively reduced the interfacial thermal resistance and phonons scattering, simultaneously contributes to the stress transfer between ABNNs and R-ANFs. When the loading amount of ABNNs is 20 wt%, the in-plane TC of the C-ABNNs/R-ANFs composite film is ∼10.15 W m−1K−1 which is nearly two times higher than that of ABNNs/R-ANFs composite film (∼5.59 W m−1K−1).

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.