Abstract
Cellulose has attracted considerable attention as a potential substitute for plastics. However, the flammability and high thermal insulation properties of cellulose contradict the unique requirements for highly integrated and miniaturized electronics i.e., rapid thermal dissipation and efficient flame retardancy. In this work, cellulose was first phosphorylated to achieve intrinsic flame-retardant properties, and subsequently treated with MoS2 and BN, ensuring efficient dispersion throughout the material. Via chemical crosslinking, a sandwich-like unit was formed, in the order of BN, MoS2, and phosphorylated cellulose nanofibers (PCNF). The sandwich-like units were further self-assembled, layer-by-layer, to successfully create BN/MoS2/PCNF composite films exhibiting excellent thermal conductivity and flame retardancy, and comprised a low MoS2 and BN loading. The thermal conductivity of the BN/MoS2/PCNF composite film containing 5 wt% BN nanosheets was higher than that of neat PCNF film. The combustion characterization of BN/MoS2/PCNF composite films revealed highly desirable properties that were far more superior than the BN/MoS2/TCNF (TCNF, TEMPO-oxidized cellulose nanofibers) composite films. Moreover, the toxic volatiles that escaped from flaming BN/MoS2/PCNF composite films were significantly reduced compared to that of the BN/MoS2/TCNF composite film alternative. The thermal conductivity and flame retardancy of BN/MoS2/PCNF composite films have promising application prospects in highly integrated and eco-friendly electronics.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.