Abstract

Abstract In-situ epitaxial graphene (EG) strategy is adopted to activate the electrochemically inactive silicon carbide (SiC) by constructing Schottky junction for high-performance anode of lithium-ion battery (LIB). Raman and Hall measurements confirm the high quality and electronic mobility of EG. Refined structural characterization (XPS and XANES) and theoretical analysis indicate that the interfacial coupled structure exhibits Schottky junction with an inherent built-in electric field, and the strong interfacial Si–C interaction could reinforce the interfacial coupling. This prototype can systematically comprehend interfacial electronic properties and transport mechanisms. As a proof-of-concept study, this interfacially designed Schottky junction is demonstrated to promote both the surface electron densities and charge carriers transportation efficiency for LIB anodes. Even at 10.0 A g−1, the EG@SiC anode can still deliver a capacity of 322.1 mA h g−1. The ex-situ XRD, HRTEM, and XPS analysis confirm the reversible intercalation reaction mechanism and excellent structural stability. The proposed strategy of constructing Schottky junction through interlayer engineering can construct advanced SiC-based electrodes for high-performance rechargeable batteries.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.