Abstract
Interface engineering has emerged as a fertile and efficacious approach to turn functional properties in the field of film systems. In this work, the interfacial properties of sputtered yttrium oxide films on zinc sulfide substrate (Y2O3/ZnS) were analyzed by transmission electron microscopy (TEM), X-ray photoelectron spectrum (XPS) depth profile and nano-scratch measurement. An interface layer with the depth of 20nm between Y2O3 film and ZnS substrate was directly observed by TEM. Under different film growth conditions, although the interfacial features including interfacial width and composition distribution exhibit similar behavior, it is found that higher cohesive strength is obtained under a special substrate bias voltage of −160V at low substrate temperature. Such an enhanced mechanical property can be understood by the role of physisorbed oxygen in the interfacial region, in which less physisorbed oxygen with van der Waals bonds leads to a strong adhesion. Our results provide a favorable strategy to achieve strong adhesion between oxide and sulfide at low temperature, which are urgent in future micro-electric applications.
Paper version not known (Free)
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have