Abstract

AbstractSurface modulation via injection or extraction of charge carriers in microelectric devices has been used to tune the energy band alignment for desired electrical and optical properties, yet not well recognized in photocatalysis field. Here, taking semiconductor bismuth tantalum oxyhalides (Bi4TaO8X) as examples, chemically inactive molybdenum oxide (MoO3) with a large work function is introduced to qualitatively tune the properties of interfacial charges, achieving an evidently enhanced upward band bending and intensive built‐in electric field. Such a simple charge modulation exhibits a remarkable improvement in photocatalytic water oxidation, reaching an apparent quantum efficiency of 25% at the input wavelength of 420 nm. The validity and generality of surface charge modulating strategy are further demonstrated using other semiconductors (e.g., C3N4) and decorators (e.g., V2O5). The findings not only provide a promising strategy for rationally manipulating the interfacial built‐in electric field in photocatalysis but also pave the way to learn from microelectronic technologies to construct artificial photosynthesis systems for solar energy conversion.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.