Abstract
The development of natural fiber (NFr) composites for a variety of applications is on the rise. The optimization of the interfacial bonding (IFB) between the reinforcing NFr and polymer matrix is perhaps the single most critical aspect in the development of natural fibre polymer composites (NFPCs) with high mechanical performance. While the IFB is critical in determining the mechanical properties of the NFPCs, such as stress transfer, it is one of the least understood components. This article offers a summary of IFB mechanisms, different modification approaches targeted at lowering incompatibility and improving IFB, and evaluation of the impact of IFB. It has been found that 1) In general, interdiffusion, electrostatic adhesion, chemical reactions, and mechanical interlocking are accountable for the IFB; 2) the incompatibility of the fibre and matrix, which results in poor dispersion of the fiber, weak IFB, and ultimately worse composite quality, may be addressed through strategic modifications; and 3) Interfacial interactions between polymers and nanoparticles (NPs) are significantly improving their performance in areas like thermal, mechanical, robust IFB, and moisture absorption. As a result, this review study could be an important resource for scholars interested in coating and treating NFr to further enhance their surface characteristics.
Published Version (Free)
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have