Abstract
The guanine-rich oligonucleotide (GRO), dGGGGTTGGGG (G4T2G4), has the capacity to form a linear supramolecular polymer known as a G-wire. Individual nucleotides of the component GROs can be functionally modified to serve as site-specific attachment points in the G-wire while not interfering with its self-assembling properties. An amine linker modification to an internal thymine base of the GRO, denoted G4TT*G4, serves as a chemically versatile attachment site. In this work, addition of an alkyl disulfide to G4TT*G4 produces the GRO G4TTdG4 enabling binding to gold nanoparticles via place exchange chemistry. G-wires assembled by combining G4T2G4 and G4TTdG4 were stably maintained in an aqueous environment. Disulfide modified G-wires (DS_G-wire) were then covered with dodecanethiol capped gold nanoparticles in an organic solvent via an interfacial place exchange reaction. Tapping Mode AFM and TEM were used to image G-wires decorated with gold nanoparticles. The specificity of the interfacial place exchange reaction was measured using a fluorometric dye displacement from the gold nanoparticles. The results show that a two component DS_G-wire with an amphipathic tether readily self-assemble as shown by PAGE and TM-AFM. The amphipathic disulfide moiety of DS_G-wires facilitates place exchange chemistry with alkylthiol protected Au nanoparticles across an aqueous-organic interface. Interfacial place exchange is an effective strategy for decorating DS_G-wires with Au nanoparticles. The use of modified G-wire self-assembly combined with a high degree of nanoparticle binding specificity presents another strategy for the use of G-wires as a rigid one-dimensional molecular scaffold with potential applications in nanoscale device construction. This article is part of a Special Issue entitled "G-quadruplex" Guest Editor: Dr. Concetta Giancola and Dr. Daniela Montesarchio.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Biochimica et Biophysica Acta (BBA) - General Subjects
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.