Abstract

BackgroundNanoparticle-metal oxide and gold represents a new class of important materials that are increasingly being developed for use in research and health related activities. The biological system being extremely critical requires the fundamental understanding on the influence of inorganic nanoparticles on cellular growth and functions. Our study was aimed to find out the effect of iron oxide (Fe3O4), gold (Au) nanoparticles on cellular growth of Escherichia coli (E. coli) and also try to channelize the obtained result by functionalizing the Au nanoparticle for further biological applications.ResultFe3O4 and Au nanoparticles were prepared and characterized using Transmission electron microscopy (TEM) and Dynamic Light Scattering (DLS). Preliminary growth analysis data suggest that the nanoparticles of iron oxide have an inhibitory effect on E. coli in a concentration dependant manner, whereas the gold nanoparticle directly showed no such activity. However the phase contrast microscopic study clearly demonstrated that the effect of both Fe3O4 and Au nanoparticle extended up to the level of cell division which was evident as the abrupt increase in bacterial cell length. The incorporation of gold nanoparticle by bacterial cell was also observed during microscopic analysis based on which glutathione functionalized gold nanoparticle was prepared and used as a vector for plasmid DNA transport within bacterial cell.ConclusionAltogether the study suggests that there is metal nanoparticle-bacteria interaction at the cellular level that can be utilized for beneficial biological application but significantly it also posses potential to produce ecotoxicity, challenging the ecofriendly nature of nanoparticles.

Highlights

  • Nanoparticle-metal oxide and gold represents a new class of important materials that are increasingly being developed for use in research and health related activities

  • Altogether the study suggests that there is metal nanoparticle-bacteria interaction at the cellular level that can be utilized for beneficial biological application but significantly it posses potential to produce ecotoxicity, challenging the ecofriendly nature of nanoparticles

  • Conclusion if we consider the recent past age to be of micro scale the present or near future surely belongs to nano

Read more

Summary

Introduction

Nanoparticle-metal oxide and gold represents a new class of important materials that are increasingly being developed for use in research and health related activities. Our study was aimed to find out the effect of iron oxide (Fe3O4), gold (Au) nanoparticles on cellular growth of Escherichia coli (E. coli) and try to channelize the obtained result by functionalizing the Au nanoparticle for further biological applications. Different classes of bacteria exhibit different susceptibilities to nanoparticles [13] but the mechanism controlling the toxicity is not yet understood. Different factors such as synthesis, shape, size, composition, addition of stabilizer etc can lead to different conclusions even for very closely related nanosuspensions [14]. The present study is aimed to investigate the effect of two widely used nanoparticles (Fe3O4 & Au) on the growth of E. coli. Attempts were made to utilize the results obtained for biological applications

Methods
Findings
Discussion
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call