Abstract

We present measurements of spin orbit torques generated by Ir as a function of film thickness in sputtered Ir/CoFeB and Ir/Co samples. We find that Ir provides a damping-like component of spin orbit torque with a maximum spin torque conductivity 1.4e5 in SI unit and a maximum spin-torque efficiency of 0.04, which is sufficient to drive switching in an 0.8 nm film of CoFeB with perpendicular magnetic anisotropy. We also observe a surprisingly large field like spin orbit torque. Measurements as a function of Ir thickness indicate a substantial contribution to the FLT from an interface mechanism so that in the ultrathin limit there is a non-zero FLT with a maximum torque conductivity -5.0E4 in the SI unit. When the Ir film thickness becomes comparable to or greater than its spin diffusion length, 1.6 nm, there is also a smaller bulk contribution to the fieldlike torque.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.