Abstract

Adsorbed {ital n}-hexadecane films of thickness {similar to}10, 20, and 40 A are studied at 350 K via molecular-dynamics simulations. In the thickest film periodic oscillations of the density extend {similar to}18 A from the solid-liquid interface, the roughness fluctuations at the liquid-vapor interface are Gaussian, and the density tail is fitted by an error function. Molecules in the first adsorbed layer lie preferentially parallel to the surface exhibiting domains of intermolecular orientational alignment. The diffusion is anisotropic with the component parallel to the surface greatly enhanced in the liquid-vapor region.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.