Abstract
Exploring bifunctional electrocatalysts with high efficiency, inexpensive, and easy integration is still the daunt challenge for the production of hydrogen on a large scale by means of water electrolysis. In this work, a novel free-standing Co3S4/CoMo2S4 heterostructure on nickel foam by a facial hydrothermal method is demonstrated to be an effective bifunctional electrocatalyst for overall water splitting (OWS). The synthesized Co3S4/CoMo2S4 electrocatalyst achieves ultralow overpotentials of 143 mV@10 mA cm−2 for hydrogen evolution reaction (HER) and 221 mV@25 mA cm−2 for oxygen evolution reaction (OER), respectively, in 1 M KOH. Moreover, it presents a greatly improved durability and stability under operando electrochemical conditions. When used as catalysts for OWS, the Co3S4/CoMo2S4-3//Co3S4/CoMo2S4-3 electrodes just need 1.514 V to make it to the current density of 10 mA cm−2. It is supposed that the introduction of heterogeneous interface between Co3S4 and CoMo2S4 could give rise to plentiful active sites and enhanced conductivity, and thus boost excellent catalytic performances. Moreover, the porous feature of free-standing nanosheets on nickel foam could benefits catalytic performances by accelerating charge transport and releasing bubbles rapidly. This work proposes a bifunctional catalyst system with the heterogeneous interface, which could be used in a sustainable green energy system.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.