Abstract
Thick hydride vapor phase epitaxy GaN layers have been grown on a-plane sapphire using high-temperature ion-assisted reactively sputtered AlN as a buffer layer. Transmission electron microscopy and atomic force microscopy were carried out to study the formation of the two interfaces sapphire/AlN and AlN/GaN, and their influence on the microstructure of both the buffer layer and the main GaN layer. It was demonstrated that the high-temperature reactively sputtered buffer layer provides a good alternative for hydride vapor phase epitaxy growth of GaN layers. In particular, the buffer promotes a specific interface ordering mechanism different from that observed on low-temperature buffers.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have