Abstract

Interface state density and channel mobility have been characterized for 4H-SiC MOSFETs fabricated with dry thermal oxides and subsequently passivated with nitric oxide. The interface trap density at 0.1 eV below the conduction band edge decreases from approximately 8×10 12 to 1×10 12 eV −1 cm −2 following anneals in nitric oxide (NO) at 1175 °C for 2 h. The room temperature field effect channel mobility increases by an order of magnitude to approximately 35 cm 2/V s following the passivation anneal. The field effect channel mobility of passivated MOSFETs shows almost no change with increasing temperature, while the mobility for unpassivated devices increases with increasing temperature and is thermally activated (∼ T 1.9) due to decreased Coulomb scattering by electrons trapped at the acceptor-like interface states near the conduction band. Over the temperature range 300–473 K, threshold voltage changes of about −0.8 and −3.7 V, respectively, are observed for devices processed with and without NO passivation.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.