Abstract
The Schottky barrier height (SBH) is a critical parameter that determines the carrier transfer at metal/semiconductor interfaces. In this work, the interfacial properties of Hf2NT2/MSSe (T = F, O, OH; M = Mo, W) heterostructures are systematically investigated using first-principles calculations. It is found that, for MoSSe and WSSe, the use of S or Se atomic layers in contact with Hf2NT2 can give significantly different SBHs. In addition, SB-free contact for electron injection can be realized for F-S interfaces in Hf2NF2/MoSSe and Hf2NF2/WSSe heterostructures. Furthermore, the SBHs of the heterostructures can be tuned by applying compressive strain and p-type ohmic contact can be obtained for O-Se interfaces in Hf2NO2/MoSSe and Hf2NO2/WSSe heterostructures. This work proposes a feasible strategy to regulate the SBHs of interfaces.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have