Abstract
The interface problem for the linear Schrödinger equations in one‐dimensional piecewise homogeneous domains is examined by providing an explicit solution in each domain. The location of the interfaces is known and the continuity of the wave function and a jump in their derivative at the interface are the only conditions imposed. The problem of two semi‐infinite domains and that of two finite‐sized domains are examined in detail. The problem and the method considered here extend that of an earlier paper by Deconinck et al. (2014) [1]. The dispersive nature of the problem presents additional difficulties that are addressed here.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.