Abstract

In this work we report the fabrication and investigation of the properties of interface pn junction arrays formed at the interface of vertically aligned p-Si microneedles and n-Si substrate. Arrays of boron doped p-Si microneedles were grown on n-Si substrate with the maximum yield of 100% by Au-catalysed vapor–liquid–solid (VLS) growth using in-situ doping with the mixed gas of Si2H6 and B2H6 at temperature less than 700°C, which is low as compared to the temperature (1100°C) required by diffusion process to dope Si microneedles after VLS growth. The physical dimension (diameter, length) and position of these p-Si microneedles can be controlled. The variation of growth rate, diameter, conductivity, impurity concentration and hole mobility of these p-Si microneeedles were investigated with the variation of boron doping. The pn junctions, formed with p-Si microneedles having different diameters, were found to exhibit standard diode characteristics. These pn junction embedded Si microneedle arrays might be potential candidate in sensor area applications. Again, low temperature processing would be compatible to integrate these junction arrays with other circuitry on a chip. This work provides one step forward to realize more sophisticated vertical active devices (BJT, MOSFET, etc) with Si microneedles.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.