Abstract

The interface nucleus approach was recently presented as a framework for understanding and predicting the emergence of modular intermetallic phases, i.e., complex structures derived from the assembly of units from simpler parent structures. Here, we present the synthesis and crystal structures of three new modular intermetallics in the Y-Ag-Zn system that support this strategy: YAg2.79Zn2.80 (I), YAg2.44Zn3.17 (II), and YAg2.71Zn2.71 (III). Each of these structures is derived from an intergrowth of slabs of the Mg2Zn11 and CaPd5+x types, with the chief differences being in the thickness and degree of disorder within the CaPd5+x-type domains. The merging of the parent structure domains is facilitated by their sharing a common geometrical unit, a double hexagonal antiprism. The use of this motif as an interface nucleus mirrors its role in another family of structures: an intergrowth series combining the CaCu5 and Laves phase structure types, as in the PuNi3-type phase YNi3. However, there is a key difference between the two series. While in the CaCu5/Laves intergrowths, the interface between the parent structures arises perpendicular to the interface nucleus's unique (hexagonal) axis, in the Mg2Zn11/CaPd5+x-type intergrowths revealed here, the interfaces run parallel to this axis. Using CP analysis of the Mg2Zn11/CaPd5+x-type parent structures, we trace this behavior to the different directions of high-CP compatibility of the interface nuclei in the Mg2Zn11/CaPd5+x and CaCu5/Laves structure type pairs. In this way, the Y(Ag/Zn)5+x phases highlight the role that interface nuclei play in directing the domain morphologies of modular intermetallic phases.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call