Abstract

The electrocatalytic generation of valuable fuels and chemicals from carbon dioxide (CO2) and others with the assistance of clean solar energy is a highly promising way to realize the carbon-neutral cycle, which invokes the systematic development of advanced electrocatalysts for efficient and selective redox reactions of feedstocks. Herein, we demonstrate the interface modification of cuprous oxide with polyvinylpyrrolidone (PVP) to improve the electrocatalytic efficiency for the synchronous formate generation. Density functional theory calculations reveal that the interfacial properties can be effectively regulated by the PVP functionalization for the favorable formation of intermediates to improve the selectivity of formate generation. Importantly, the advanced electrocatalyts enable an efficient coupling of CO2 reduction with methanol oxidation in an electrochemical cell powered with a solar cell. The work provides a predictive link between the electrocatalytic redox reactions by applying the interfacial regulation strategies of electrocatalysts.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.