Abstract

We reported in the paper the optimization and control of InSb interface properties during molecular beam epitaxy growth of InAs/GaSb superlattice structures. Samples with identical structure but different growth approaches, conventional molecular beam epitaxy (MBE) and migration-enhanced epitaxy (MEE), for interface layers were first prepared and their structural, morphological and optical properties were compared. The MEE samples had significant higher As composition in InSb interface layers and higher luminescence efficiency. Samples with different InSb interface layer thickness were then prepared. By changing the interface layer thickness, one can effectively tune the lattice mismatch and photoluminescence peak wavelength. Though X-ray diffraction satellite peak linewidth and surface roughness of the grown samples changed little, the one with smallest negative lattice mismatch showed the highest luminescence efficiency. Finally a P-I-N superlattice detector structure was grown with controlled interfaces. The full width at half maximum (FWHM) of the 1st-order X-ray diffraction satellite peak of the absorption layers was only 19″. The detector structure showed a cutoff wavelength of 6.3µm at 77K. The dark current density at −50mV bias was 4.3×10−5A/cm2 and the peak detectivity was 4.2×1011cmHz1/2/W.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.