Abstract
By applying linear response theory and the Onsager principle, the power (per unit area) needed to make a planar interface move with velocity V is found to be equal to V2/ μ, μ a mobility coefficient. To verify such a law, we study a one dimensional model where the interface is the stationary solution of a non local evolution equation, called an instanton. We then assign a penalty functional to orbits which deviate from solutions of the evolution equation and study the optimal way to displace the instanton. We find that the minimal penalty has the expression V2/ μ only when V is small enough. Past a critical speed, there appear nucleations of the other phase ahead of the front, their number and location are identified in terms of the imposed speed.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.