Abstract
AbstractThe emergence of novel mutations in the SARS‐CoV‐2 spike protein challenges monoclonal antibody (mAb) effectiveness. Comprehending resistance mutations and pinpointing vulnerable spike protein residues is vital for enhanced antibody design. To address this issue, we employed an interface‐guided computational protein design (CPD) approach to decode bebtelovimab‐resistance mutations and uncover susceptible residues within the receptor‐binding domain (RBD). Utilizing structural‐modeling and high‐throughput techniques, we mapped the bebtelovimab‐RBD interface, identifying critical resistance mutations through analysis of binding energetics and residue interactions. Our design protocol integrated stability predictions, side‐chain conformational sampling, and binding affinity calculations to prioritize substitutions that restore antibody recognition and neutralization. Previously unexplored susceptible RBD residues were also discovered, offering new therapeutic avenues. Comparative analysis with COVID‐19 patient data validated the predicted resistance mutations (69 %–100 % correlation, based on different MinProp cut‐offs). Precision and recall values, calculated by comparing our predictions with experimentally reported bebtelovimab‐escape mutants, demonstrated the performance and accuracy of our predictions. Investigation of intermolecular interactions highlighted the importance of van der Waals forces, hydrogen bond energy, and electrostatic contributions in bebtelovimab‐RBD binding affinity. This computational design empowers the decoding of resistance mutations and the development of next‐generation antibodies against viral variants, strengthening our response to SARS‐CoV‐2 and related coronaviruses.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.