Abstract
The Si/dielectric interface properties influence device performance significantly. Often the interface is not stable and changes during and/or after the growth. For a better understanding of the interface and layer formation processes of Nd2O3 on Si(001), as an example for the lanthanide oxides, well-defined experimental studies by reflection high-energy diffraction and x-ray photoelectron spectroscopy were performed under ultraclean ultrahigh vacuum conditions of molecular beam epitaxy. Complementary investigations were performed by transmission electron microscopy. We found that Nd2O3 is a candidate for replacing silicon dioxide as gate dielectric in future Si devices with suitable band gap and offset with respect to silicon. However, under ultrahigh vacuum conditions, silicide formation occurs in the initial stage of growth, which can result in large silicide inclusions and hole formation during further growth. This effect can be completely prevented by modifying the oxygen partial pressure during the interface formation and layer growth.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have