Abstract

As interfaces play a more important role in high-volume-fraction ceramic/metal composites because of containing more hetero-phase interfaces, it is a great challenge to control the interfaces in such composites to balance their strength and plasticity and to obtain high performances. In this work, 50–60 vol% (TiC + TiB2)/Al composites were fabricated in Al–Ti–B4C system via a one-step method of reaction and densification, and their interface bonding and mechanical properties were compared with those of in-situ TiC/Al composites. Apparently, the defects, such as interfacial discontinuity, macro-pores, coarsening and agglomeration of particles, caused by increased ceramic content in the TiC/Al composites, are eliminated in the (TiC + TiB2)/Al composites using Al–Ti–B4C system. The 60 vol% (TiC + TiB2)/Al composite exhibits significantly enhanced mechanical properties, i.e. 70.5%, 60.7% and 69.8% respectively higher yield strength, ultimate compressive strength and plastic strain than 60 vol% TiC/Al composite. Such enhanced mechanical properties are attributed to the improvement in interface bonding strength and therefore the increase in the energy dissipation of crack propagation. The formation of enhanced interface in the (TiC + TiB2)/Al composites results from the reduction in the reaction heat in the Al–Ti–B4C system, improved crystallographic match and improved adhesion work between ceramic particles and matrix. This work may provide a new idea for the design and control of interfaces in high-volume-fraction ceramic-metal composites.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.